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This article is concerned with the donor cell treatment of convection in numerical 
simulations of convectivediffusive flow. The two sources of numerical diffusion in this treat- 
ment, truncation error and crossflow diffusion, are explained and quantitied. Truncation error 
occurs due to the use of approximate profile assumptions while crossflow diffusion arises due 
to cell-wise homogenization of the convected quantity in multidimensional problems. 
Crossflow diffusion is the dominant source of error in many cases. A corrective scheme is 
introduced in this article which compensates for the effect of crossflow diffusion by reducing 
the effective anisotropic diffusion coefficient used in the diffusion portion of the simulation. 
Relationships are developed quantifying the crossflow diffusional error and requirements for 
explicit numerical stability when the error correction technique is employed. The magnitudes 
of the diffusional error and the improvements realized using the corrective scheme are 
demonstrated through computational examples. ( : 1986 Academic Press, Inc. 

1. INTRODUCTION 

Numerical diffusion arising in the use of the donor cell treatment of convection 
continues to be a source of confusion and difficulty in the field of computational 
fluid dynamics. The purpose of this article is to clarify and quantify the sources of 
numerical diffusion in the donor cell treatment of convection-diffusion problems, 
and to suggest a method for correction of crossflow diffusion. Numerical diffusion 
comes from two different sources: truncation error and crossflow diffusion. Trun- 
cation error arises from use of approximate profile assumptions in infinitesimally 
differencing temporal and spatial derivative terms while crossflow diffusion arises 
from cell-wise homogenization of the convected quantity in a multidimensional 
problem, Crossflow diffusion is found to be the dominant source of error in many 
problems. In this article the crossflow diffusion error is quantified and a scheme for 
its reduction is proposed. The stability conditions for the new corrective scheme are 
derived by the von neumann method in terms of the dimensionless numbers, 
u At/Ax and u Ax/D. Validation calculations are performed in a simple geometry so 
that the numerical solutions can be compared easily with corresponding analytic 
solutions. Finally, the corrective scheme is applied to the test problem presented in 
CQI. 
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2. TRUNCATION ERROR DIFFUSION 

Truncation error occurs due to the approximate nature of a finite difference 
equation and usually appears as additional diffusion. Most previous analyses (e.g., 
[5, 6, 111) have concentrated on the evaluation of this source of inaccuracy. A 
finite difference equation is derived from a partial differential equation by using 
assumed profiles for the spatial and temporal variation of the quantity under con- 
sideration. Since these profiles are not generally exact, truncation errors are 
unavoidable. However, it is possible to reduce such errors to an acceptable level by 
assuming reasonable profiles based upon appropriate dimensionless numbers and 
using weighted differencing schemes [8]. For example, along the inflow boundary 
of a cell it is reasonable to assume that a local upstream value prevails (i.e., a 
uniform profile) when convection is dominant over diffusion or that a profile is 
locally linear when diffusion is dominant over convection [ 131. 

The profile of a general conserved quantity 4 is given by the dimensionless cell 
Peclet number, P = u Ax/D. Its value indicates the relative importance of convection 
and diffusion. The name, truncation error, originates from the truncation of the 
second- and higher-order terms in the derivation of a finite difference equation as 
with the example 

(1) 

The approximation in Eq. (1) is valid if the profile of CJ~ is almost linear over Ax 
such that 

(Ax)” -~ ’ ,“q!~ ‘v o 
--z--- ax” 

for n32. (2) 

Since truncation error arises both in one-dimensional and multidimensional 
problems a one-dimensional case is chosen for analysis for the sake of clarity. In an 
illustration to quantify the truncation error, an analytical solution and a numerical 
solution is obtained for a steady-state one-dimensional convectiondiffusion case 
with no source and are compared to each other to obtain the effective diffusion 
term which is introduced into the numerical solution by this error. The results of 
the analysis may be extended to a general one-dimensional case if the effects of the 
transient and source terms are not dominant in determining the profile of 0. The 
governing equation is 

(3) 
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The calculation domain of length L is divided into N equal cells with a cell interval 
Ax = L/N. The two boundary values 4 (x = 0) = do and 4 (x = L) = @N are assumed 
to be known constants. The analytical solution to Eq. (3) is 

Q = C, e’-‘+ C,, (4) 

where 

c = u/D, C, = (4N - doMe’” - 11, 

C, = (q50e(‘L - iN)l(ecL - 11, and it is assumed that 1~30. 

Equation (3) is finitely differenced using the donor cell and central difference 
schemes for the convection and diffusion terms, respectively, as 

where it is assumed u > 0. Equation (5) can be stated as 

The solution to Eq. (6) is given by the relationship 

(6) 

(7) 

By substitution of both the analytical and numerical solutions into the diffusion 
term of Eq. (5), the effective diffusion coefftcient for the numerical solution can be 
obtained. The resulting relationships 

and 

(9) 

are obained using the analytic and numerical solutions, respectively. Comparison of 



204 HUH, GOLAY, AND MANN0 

Eqs. (8) and (9) allows the formulation of an effective cell Peclet number P, which 
governs the numerical solution in terms of the actual cell Peclet number P as 

e (i- I)Pc 

NP, (e’e - 1)2 = ((l*$$ Yl’, 
e 

(10) 

where P, = ZJ Ax/D,, and D, is the effective (i.e., numerical plus physical) diffusion 
coefficient which is reflected in the numerical solution. Equation (10) can be 
reduced to the form 

P, = ln( 1 + P). (11) 

Table I shows for this case that the ratio of the truncation error diffusion con- 
stant to the physical diffusion constant, DTE, ID is small for small values of P. It is 
also insignificant for large values of P in comparison to the crossflow diffusion con- 
stant which is the order of u Ax when the flow is not oriented with the grid in a 
multidimensional problem. Consequently, the error due to truncation error dif- 
fusion can be neglected in both diffusion-dominant and convection-dominant 
problems. It is illustrated in Section 6 that truncation error diffusion is tolerably 
small in many convectiondiffusion problems. 

Using the central difference treatment of convection, 

ud’+‘-d’ I=D4’+,-2~,+L 
2 Ax Ax* ’ 

TABLE I 

Dependence upon P of the Ratio of the Truncation Error 
Diffusion Constant to Physical Diffusion Constant and 

u dx according to Eq. (11) (D,, = D, - D) 

P &E/U Ax &E/D 

0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 
100.0 

1000.0 
108 

0.49 0.05 
0.48 0.10 
0.47 0.23 
0.44 0.44 
0.41 0.82 
0.36 1 .I9 
0.32 3.17 
0.21 20.67 
0.14 143.74 
0.05 4.38 x 10’ 

(12) 
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the effective Peclet number for the finite difference solution of Eq. (12) is similarly 
found to be 

2+P P,=ln 2-p , ( > (13) 

where -2<P<2. 

3. CROSSFLOW DIFFUSION 

The origins of crossflow diffusion have been identified by Patankar [7] and 
Stubley et al. [14, 151 and it was argued that this is the dominant error source in 
most multidimensional convection-diffusion problems. In this section the origin of 
crossflow diffusion is illustrated and the corresponding diffusion constant is quan- 
tified so that it can be used in a corrective scheme. Other investigators have 
attempted to do this. For example, deVah1 Davis and Mallinson [3] have 
attempted to quantify crossflow diffusion and suggested the following two-dimen- 
sional expression: 

D 
U Ax Ay sin’ 19 

DM = 4( Ay sin3 8 + Ax cos3 0)’ (14) 

where U is the absolute magnitude of the velocity and i3 is the angle between the 
velocity vector and the x axis. 

In analyzing and testing Eq. (14), we have found that it is valid only when 
8= r/4 and Ax = Ay in a two-dimensional case, and that it usually underpredicts 
the crossflow diffusion effect. 

The origin of crossflow diffusion is illustrated in Fig. 1 which shows a single cell 
used in describing a pure convection problem. In Fig. 1A hot and cold fluid enters 
the grid from the left and bottom surfaces, respectively, with their interface aligned 

Hot Medium Medium 

H~~'~/~d H{~/~di"~~:b- 

Cold Cold Cold 

(A) (B) (Cl 

FIG. 1. Illustration of crossflow diffusion in a single cell for a purely convective flow oriented 
diagonally across the cell, with a hot&cold fluid interface crossing the cell diagonally: (1A) physical flow, 
(IB) donor cell treatment of that flow, (1C) resultant donor cell flow field. 
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at a 45” angle. In a flow without diffusion the hot fluid will issue from the top sur- 
face and the cold fluid from the right surface. The donor cell treatment of this flow 
is illustrated in Fig. 1B. Note that this treatment is formulated only in terms of 
velocity components normal to the cell surfaces. Homogeneous mixing of the 
inward flowing streams occurs within the mesh and intermediate temperature fluid 
will exit equally from the top and right surfaces. The numerical result outlined in 
Fig. 1B is interpreted physically as that shown in Fig. 1C. The homogenization 
illustrated in this example is the source of crossflow diffusion which arises indepen- 
dently of truncation error diffusion. It occurs only when the velocity field is not 
aligned with the grid. 

The diffusive nature of this error is illustrated in the flow shown in Fig. 2 which 
shows an array of cells equally spaced, aligned in two dimensions, and used to 
describe a pure convention problem. In this flow the fluid is convecting the quantity 
4 along the stremline passing through the origin of the coordinate system A, and 4 
observed at point A should also be seen at points A,, A,, A,, and A,. However, in 
the donor cell treatment of convection 4 is distributed as shown in Fig. 2. It is seen 
along each plane intersecting the mesh points diagonally that Q is conserved. For 
example, at the downstream diagonal level passing through the point A, it is seen 
that the values at the mesh points add to 4 as 

(l-p)@ 

AY 

m 

where p = U/AX 
u/Ax + u/(Iy 

FIG. 2. Illustration of crossflow diffusion from the donor cell treatment of a purely convective flow in 
two dimensions. 
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The effective crossflow diffusion coefficient is obtained in the following discussion 
in two dimensions, utilizing the geometry of Fig. 2. During the time 6t required for 
flow along the streamline from point A to A, there occurs an x-directed transport 
of pd to the coordinate (Ax, 0) and the y-directed transport of (1 -p) 4 to the coor- 
dinate (0, dy). The x-directed transport of p# occurs at a total velocity equal to 
Ax/d?, which is the sum of convective and diffusive contributions. The effective x- 
directed diffusive velocity is then obtained as: 

AX 
UCF=6t-U. 

(16a) 

Similarly, the y-directed effective diffusive velocity is obtained as 

Al’ 
--v 

vCF= 6t . 

The effective x-directed and y-directed crossflow diffusion coefficients are defined, 
respectively, by the relationships: 

and 

-D,, ?k ($?,. 
a y 

The x- and y-directed diffusive currents of C$ are obtained, respectively, as 

8.v = UCF .d (18a) 

and 

$y=kF+P)b (18b) 

The gradients of 4 may be approximated as follows: 

ad d -N -- 
ax- Ax 

and 

(19a) 

a4 4 --‘v --, 
8~ AY 

581.,63.,1-14 

(19b) 
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From Eq. (17) the respective diffusion coefficients are then obtained as 

and 

DC,, = (1 -p) Ay uCF. Wb) 

From geometrical considerations 6t is obained as: 

( 1 
I tit= ;+; (21) 

Note that the streamline is not required to be orthogonal to the cross-grid diagonal 
from the coordinates (Ax, 0) to (0, Ay) to obtain these results. 

Utilizing Eqs. (16) and (21) the respective x- and y-directed diffusion coefficients 
are obtained in the form: 

and 

DC.,-, = u Ax[ 1 -p] 

DC,, = v Ay p. 

The three-dimensional extension of this result is 

DC.,;, = u Ax( 1 -p,), 

Do:\ = 0 AY( 1 - PJ 

(234 

(23b) 

and 

D,, = w A,-( 1 - p,). t23c) 

4. POSSIBLE DIFFUSION-MITIGATION METHODS: 

SKEW DIFFERENCING AND CORRECTIVE SCHEMES 

Many schemes have been proposed to eliminate numerical diffusion. Among the 
most important ones are Raithby’s scheme [9], the tensor viscosity method [4], 
the finite element method [l], and method of characteristics [2]. Most of these 
schemes can be categorized into two classes: skew upwind differencing and donor 
cell corrective schemes. In a skew differencing scheme, finite upwind differencing of 
the convection term is performed not in terms of the mesh direction velocity com- 
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ponents, but along the velocity vector direction. While the donor cell treatment of 
the convection term results in a 5-point relationship in a two-dimensional problem, 
the skew differencing sheme involves a 9-point relationship. The inclusion of four 
additional corner points contributes to more accurate numerical modeling of con- 
vection. However, unphysical results may arise because of deviations of the flow 
streamlines from the linear interpolation path used in the skew differencing scheme 
in convection-dominant problems. 

The tensor viscosity method is similar to that of this work in that it provides a 
convective directionally dependent diffusivity to compensate for negatively diffusive 
truncation errors arising in the central-differencing treatment of transient convec- 
tion. In the case of the tensor viscosity method the compensation consists of both 
truncation and crossflow positive diffusivities added to the physical diffusivity. 

Corrective schemes attempt to reduce the effective diffusion constant operating in 
a problem to compensate for the effect of the additional donor cell-induced 
numerical diffusion. However, such schemes are valid only when the effective 
numerical diffusion constants can be predicted accurately. Since crossflow diffusion 
is the dominant error source in many multidimensional problems (see Sect. 6) and 
its effective diffusion coefficients for crossflow diffusion can be predicted 
theoretically, the corrective scheme could be expected to provide a numerical 
solution which is almost free from numerical diffusion error. 

A New Corrective Scheme 

The corrective scheme proposed in this paper uses the directionally dependent 
diffusion coefficients defined in Eq. (23) to reduce diffusion currents of 4 in the x, y, 
and z directions. The physical diffusion coefficient Dph is defined at a cell center and 
the crossflow diffusion constant, D,,=, DcFy, or D,, is defined at a cell interface, 
and is dependent upon the local velocity vector. Using the proposed corrective 
scheme the effective value of D in Eq. (24) is calculated as Dph - DCF, for x-directed 
diffusion, and by D,,,, - DCF, for y- directed diffusion. 

The implementation of Eq. (23) in a practical problem must be considered 
carefully. All of the two-dimensional results reported here are obtained using a 
staggered grid, where the two outward normal velocity components u and v are 
used with the cell dimensions to calculate the crossflow diffusion coefficients. These 
coefficients are assigned to each of the cell faces to reduce their respective dif- 
fusional currents. Since velocity vectors should be used in making these diffusional 
corrections, a degree of unavoidable arbitrariness arises in cases where the velocity 
field is not uniform over a single cell and some interpolation formula must be used 
in defining the velocity vector characteristic of each cell face. 

It is also important to note that this convective scheme does not account for all 
numerical errors. For example, when the velocity is oriented at 45” to the x axis the 
corrective scheme becomes identical to the central difference scheme. The latter has 
been shown to include significant errors in addition to those of crossflow diffusion 
c141. 
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5. STABILITY OF THE PROPOSED CORRECTIVE SCHEME 

In the proposed corrective scheme the physical diffusion coefficient is reduced to 
compensate for crossflow diffusion. When the magnitude of the physical diffusion 
coefficient is less than that for crossflow diffusion, the value of (D,, - D,,) becomes 
negative. To our knowledge, the stability of a finite difference equation with a 
negative diffusion constant has not been treated in the literature, but must be given 
careful consideration here since it is vital to the generally successful application of 
the corrective scheme. In this section the stability conditions of this scheme are 
derived by the von Neumann method in terms of the dimensionless numbers, 
C, = u At/Ax, dx = D At/Ax2, and P, = u Ax/D. 

A two-dimensional convection-diffusion equation in an explicit donor-cell con- 
vection, central-difference diffusion form is given as 

(24) 

assuming u and u are positive. The solution 4;; is expanded in the von Neumann 
method as 

where I = fi. 
Substitution of Eq. (25) into Eq. (24) yields the following expression for the 

amplification factor c, the absolute value of which should be less than unity to 
guarantee stability, or 

{=l-C,(l-em”,)-C-,,(l-e ‘“I) - 2d,( 1 - cos 0,) - 2d,,( 1 - cos O,,), (26) 

where 

DAt 
d,=- 

Ax2 ’ 

q=“d’, 
AY 

D At 
d? = - 

Ay2 ’ 

and 

Ill d 1 for stability. (27) 

The Courant numbers, C, and C,, are defined such that they are always positive, 
regardless of the directions of the velocities u and v. The stability conditions can be 
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dx, dy or dz 

FIG. 3. Domain of stability of Eq.(24) in the plane (C,, d,), etc., for explicit scheme with donor cell 
differencing of convection term in one-, two-, and three-dimensional cases, respectively. 

derived from Eq. (28) in terms of C,, C,, d,, and d, by a graphical method using 
the characteristics of a quadratic equation. Although the details of the algebra are 
not presented here, the resulting domain of stability in (C, d)-space is illustrated in 
Fig. 3. The stability conditions for one-, two-, and three-dimensional cases are 
illustrated in Fig. 3, which shows that the size of the stable region in (C, d)-space 
shrinks on a linear scale with increasing dimensionality. This dependency has not 
been identified by other investigators [6, lo]. 

Since our usual concern is the determination of the maximum stable time-step 
size for a given mesh spacing, it is necessary to specify the stable range of C, for a 
given cell Peclet number u Ax/D = P,, which is independent of the time-step size. 
The stability condition for the finite difference equation, Eq. (24) is given in terms 
of C, and P, in Fig. 4. Finally, Table II contains a comparison of numerical 

cx KY) 

t 

cx =+1 +$j 1 

x 
c =2 

x 112 2c1++ 

------------------- - ---..- - __------- x---m 

-2 0 Px’Py’ 

FIG. 4. Stability domain in the (P,, C,) and (P,, C,) planes, respectively, for the explicit scheme 
with donor cell differencing of the convective term (Eq. (24)) in a general two-dimensional problem. 
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TABLE II 

Comparison of the Stability Conditions in Terms of the Cell 
Peclet Number by von Neumann Analysis to Results of 
Numerical Experiments. Equation (24) is Used to Obtain the 

Flow Field in the Problem Illustrated in Fig. 6B. 

Maximum stable C, 

p, 
Von Neumann Numerical 

analysis experiments 

0.833 0.147 0.180 
8.333 0.403 0.540 

83.333 0.488 0.660 
833.3 0.499 0.660 
- 8.333 0.499 0.660 
-4.167 0.260 0.720 
- 2.629 0.120 0.120 
- 2.083 0.019 0.060 

experimental results to the stability condition presented in Fig. 4. The case 
examined is that shown in Fig. 6B, using both positive and negative diffusion coef- 
ficients. The von Neumann analysis is shown to be qualitatively correct and 
uniformly to underestimate the maximum stable time step size which actually 
obtains. The domain of stability of the fully implicit version of Eq. (24) has also 
been determined from a similar von Neumann analysis to be 

P,<-2, p,>o, and c,>o. (28) 

6. RESULTS 

Illustration of crossflow diffusion being much greater than truncation error dif- 
fusion: 

Truncation error and crossflow diffusion are compared in the flow geometry of 
Fig. 5 where an analytical solution for the steady convection diffusion-determined 
distribution of 4 at the domain exit can be obtained. In this case a uniform horizon- 
tal flow with an inlet boundary discontinuity in 4 is analyzed. The transport of d is 
governed by Eq. (29). Numerical solutions are obtained by donor cell differencing 
of the convection term and central differencing of the diffusive term. The equation 
for &transport is governed by 

(29) 
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(A) 
Y 

z=,., 
A ay 

YO 

@ = Oh 

1 - 

a = 0.0 

1 xc 
B 

g= 0.0 

Governing Equation: 

wherea = 1.0 

g= 0.0 : = 10.0 
h 

Case I: x0 = yo = 5.0 

u = 10.0 

+ 
x Case 11: x: = y3 = 5.0 

u = ” = 7.07 

;B) 

:=t 
h 

I 
B 

t 

I’=o.o 

B t specified x- x 

FIG. 5. Problem geometry for the two treatments of identical flow problems: (A) flow parallel to grid 
axis and (B) flow across the grid, in order to evaluate the magnitude of the crossflow diffusion coef- 
ficient. 

This equation is solved as illustrated in Fig. 5. In one solution the numerical grid is 
aligned with the flow as shown in Fig. 5A, and in the other it is solved in a grid 
array aligned at 45” with the flow (see Fig. 5B). In both solutions both truncation 
and crossflow diffusion errors are included in the solution. In Fig. 6 the &dis- 
tribution results along selected lines in the domain are displayed. The results in 
Fig. 6A show that the numerical solution obtained using the grid alignment of 
Fig. 5A is close to the analytical solution and truncation error is negligible. Since 
truncation error diffusion occurs in the flow direction in this case, the numerical 
solution should give a steeper profile than the analytical solution in the direction 
normal to the flow, as is shown n Fig. 6A. In Fig. 6B, which shows the numerical 
solution obtained using the grid of Fig. 5B, it is shown that excessive numerical dif- 
fusion occurs due to crossflow diffusion. In both cases results for both 10 x 10 cell 
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(‘1 ‘I 1’1 ‘/ 

Ll 

,‘/ /‘./’ /’ .’ ,j .’ ,,‘,.’ 
0 *.2.- 

FIG. 6. (A) Comparison of the @-distribution along the line CD in Fig. 5A from the analytic and 

numerical solutions, respectively, with donor cell differencing of the convective term using 6 x 6 and 
10 x 10 grids. (B) Comparison of the @-distribution along the line CA in Fig. SB from the analytic and 
numerical solutions, respectively, with donor cell differencing of the convection using 6 x 6 and 10 x 10 
grids. (Analytical solution (-); Numerical solution for 6 x 6 (---) and IO x 10 (-,-).) 

and 6 x 6 grids are shown. The crossflow diffusion constant is proportional to the 
mesh spacing in Eq. (23), therefore more diffusion is observed in the coarser grid 
solutions. 

Quantification of DC, 

To demonstrate the correct quantification of the crossflow diffusion error, results 
from the two formulae for the prediction of crossflow diffusion, Eqs. (14) and (23) 
are presented. They yield the same crossflow diffusion coefficient for the case of 
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0 = 0r = 45” where 8 = tan-r u/u and 19, = tan - ’ Ay/Ax. The problem geometry in 
Fig. 7 has the arbitrarily chosen angles of 6 and 8, of 60 and 76.81’) respectively. 
Figure 8 shows the comparisons for the $-distribution along the line BD of Fig. 7 of 
the numerical solutions and the analytical solution with the diffusion constant 
(A)(D + DCF), where the crossflow diffusion constant DCF is given by Eq. (23) and 
VW + DDM) when DDM is given by Eq. (14). Superiority of the prediction for- 
mula Eq. (23) is indicated by the observation that agreement of the analytical 
solution with the former treatment is better than the latter. 

Application of the new crossflow diffusion corrective scheme to a standard 
problem: 

The corrective scheme proposed in this paper is applied to the test problem 
illustrated in Fig. 9, where the inlet &profile and the velocity field are prescribed, 

Governing Equation: 

where 

x3 = yn = 10.0 

n = 1.0 

= 10.0 

+ 
D 

” 
C 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

a Cells 

m 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

e \ 

A 24 Cells B 

FIG. 7. Problem geometry with arbitrary values 
(23) for prediction of crossflow diffusion coefficient. 

Ax = 0.2406 

Ay = 1.0267 P,= 76.81” 

u = 5.0 

v = 8.6603 8 = 60” 

D 
DM 

= 0.7674 

D 
CF 

= 3.335 

of 0 and 0, to compare results from Eqs. (14) and 
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I’ 
/’ 

I’ I 
I’ 

I’ 

,:- 

/’ 
/’ 

/’ 
I’ 

FIG. 8. Comparison of the @-distributions along the line BD for the flow illustrated in Fig. 7 from 
the numerical solution (---) using donor cell differencing and analytic solutions (-) using diffusion coef- 
ticients inreased to include crossflow diffusion terms: (A) D,=D+ D,,, Dc, from Eq. (23) 
(B) (D, = D + Do,, DDM from Eq. (14). 

Streamlines 

Governing Equation: 

G.00 - & uz: = 0 

Velocity field: 

” = Zy(l - x2) 

” = -2x(1 - y2) 

Boundary condition: 

0 = l+tanh[(Zx+l)a] 

y=o. _ -1 CX’O (inlet) 

C = 1 - tanh a 

1 

x = -1, O<y<l 

- - y=l, -l<x<l 

x=1, O<y<l _ _ 

where a= 10.0 

Inlet profile 

@ 
2.0 

0 Ll 
0 x-inlet -1.0 

FIG. 9. Geometry and flow of test problem for numerical representation of convection, from 1121. 
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and the outlet &profiles are calculated numerically for various Peclet numbers. This 
problem has been used previously in a comparison of methods for numerical treat- 
ment of convection in convectiondiffusion solutions [ 121, and the performance of 
the proposed method is presented for comparison to the previously obtained 
results. The results obtained using the proposed crossflow diffusion corrective 
scheme for various values of P, are presented in Figs. IOA-E. A grid of 10 x 20 cells 
is used for all of these results, with Ax and Ay each equal to 0.1. 

For P = 10 (Fig. 10a) there is an apparent deviation between the reference and 
numerical solution, which has occurred because the reference solution is defined at 
the domain boundary while the numerical boundary condition is defined at the 
mesh points next to the boundary. The corrective scheme is not the cause of the 
observed deviation since the boundary condition of 0 = 2.0 at x=0.0 cannot be 
matched exactly in the staggered mesh. For P= 100 the numerical solution with 
90% correction (i.e., a 90% correction implies that D,, is reduced by the amount 

TABLE III 

Distribution of Crossflow DifTusion Constants in Domain of Problem Shown in Fig. 9 

1.0 

Y 

0 

0.002 0.004 
0.000 0.000 

0.005 0.010 
0.002 0.006 

0.008 0.016 
0.004 0.010 

0.011 
0.005 

0.019 
0.014 

0.012 
0.006 

0.014 
0.007 

0.014 
0.008 

0.014 
0.008 

0.012 
0.008 

0.022 
0.016 

0.023 
0.018 

0.023 
0.019 

0.021 
0.019 

0.017 
0.017 

0.007 0.008 
0.007 0.012 

0.006 0.007 
0.000 0.000 

0.015 0.019 
0.009 0.012 

0.022 0.027 
0.016 0.021 

0.027 0.032 
0.021 0.028 

0.035 
0.03 1 

0.030 
0.027 

0.029 
0.027 

0.025 
0.025 

0.019 
0.021 

0.008 
0.014 

0.033 

0.032 
0.032 

0.027 
0.029 

0.019 
0.023 

0.008 
0.014 

0.009 
0.000 

0.023 
0.015 

0.03 1 
0.026 

0.036 
0.033 

0.038 
0.036 

0.037 
0.037 

0.033 
0.035 

0.027 
0.030 

0.018 
0.023 

0.007 
0.014 

0.011 0.012 0.013 0.012 0.000 
0.000 0.000 o.ooil 0.000 0.000 

0.025 0.027 0.026 0.020 0.000 
0.018 0.020 0.021 0.020 0.012 

0.034 0.034 0.030 0.02 1 0.000 
0.029 0.031 0.030 0.026 0.013 

0.038 0.036 0.03 1 0.020 0.000 
0.036 0.036 0.034 0.027 0.012 

0.038 0.036 0.029 0.018 0.000 
0.038 0.038 0.034 0.025 0.011 

0.036 0.033 0.026 0.015 0.000 
0.038 0.036 0.03 1 0.023 0.009 

0.031 0.028 0.021 0.012 0.000 
0.035 0.032 0.027 0.019 0.007 

0.025 0.021 0.016 0.009 0.000 
0.030 0.027 0.022 0.015 0.006 

0.016 0.014 0.010 0.006 0.000 
0.022 0.019 0.016 0.010 0.004 

0.006 0.005 0.004 0.002 0.000 
0.012 0.011 0.008 0.005 0.002 

” x 1.0 

Note. Data format for each cell: ($.) 
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Reference solution 

-.-.-.-.-.- 100% correction 

------- 90% correction 

+ + + + + + 80% correction 

-..-.'--.-..-7O% correction 

P = 100 

FIG. 10. Comparison of reference solution to numerical solutions using proposed corrective scheme: 
(A) P=lO, (B) P=lOO, (C) P=SOO (D) P= 103, and (E) P= 106. (Reference solution (-); 100% 
correction (-,-); 90% (---); 80% (+ + + ); 70%(-,,-).) 
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FIG. l&Continued. 

0.9 D,,) is almost identical to the reference solution. For P = 500 and P = 1000, the 
solution with 80% correction yields the best results. Although the quality of the 
results degrades slightly for larger Peclet numbers, good agreement between the 
reference and numerical solution continues to be obtained. For P= 106, the 
solution with an 80% correction shows an oscillating tail near the boundary region 
while the solution with a 70% correction shows exessive diffusion without 
oscillation. As larger diffusion corrections are made, more deviation occurs between 
the reference and numerical solution due to this oscillation. The cause of the 
oscillation is the existence of a negative net diffusion coefficient, 
@,I, + D,, - D,,), occurring within the domain. In a convection-dominant 
problem the physical diffusion coefficient D,, is much smaller than the numerical 
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and crossflow diffusion coefficients D,, and D,,. Therefore the net diffusion coef- 
ficient may become negative when the crossflow diffusion coefficient D,, is slightly 
overpredicted. Prediction of the crossflow diffusion coefficient DCF by Eq. (23) 
should be accurate in a unidirectional flow, but may be in error when the flow 
changes its direction continuously because the change of flow direction over one 
mesh spacing is not taken into consideration in the derivation of the corrective 
scheme. 

The crossflow diffusion coefficients which obtain for this problem are listed in 
Table III. It is seen that DCF, and DCF, attain their greatest values in the regions of 
the domain where the angle between the velocity and c1 axis is close to 45”. For this 
problem Dphz l/p. Difficulties would be encountered in use of the convective 
scheme of this paper when Dph <DCF because of possible overconvection of 
numerical diffusion. Since DCFmax =0.035 it would be expected that the convective 
scheme would work well for values of P < 100, and would exhibit possible overcon- 
vection at greater values of P. 

The partial corrections used in this example illustrate the limitations of the 
corrective scheme. Such behavior is observed in this example with oscillatory 
solutions being observed earliest as P increases in the regions where D,, is large. A 
calculation exhibiting oscillatory solutions such as those shown here may need to 
be performed again using a reduced correction in order to obtain stable results. 
Sources of possible overcorrection include numerical errors in addition to those of 
crossflow diffusion and incorrect evaluation of DcF arising from nonuniformity in 
the velocity field over the space of a single cell. 

7. CONCLUSIONS 

The major conclusions of this article are the following: 

(1) There are two numerical diffusion sources: truncation error and cross- 
flow diffusion. Truncation error occurs due to use of approximate profile 
assumptions while crossflow diffusion occurs with the donor cell treatment of con- 
vection in a multidimensional problem. Truncation error diffusion causes negligible 
errors in both diffusion-dominant and convection-dominant problems whereas 
crossflow diffusion causes significant errors in multidimensional convection- 
dominant problems. Consequently crossflow diffusion is the dominant error that 
should be corrected for acceptable solution accuracy in most fluid dynamic 
problems of practical interest. 

(2) Two types of approaches for elimination of the crossflow diffusion error, 
skew upwind-differencing and corrective schemes, have been used widely. The skew 
upwind differencing scheme gives good results for some problems, but may give 
unphysical results in recirculating flow problems using coarse grids. The corrective 
scheme presented in this work is based on the fact that crossflow diffusion can be 
predicted accurately for every mesh at every time-step. Stability analysis shows that 
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there exists a stable range of the time-step size for a certain negative range of the 
cell Peclet number. 

(3) The corrective scheme gives satisfactory results for most convection-dif- 
fusion problems. However, for certain cases characterized by high Peclet numbers 
and substantial curvature of the velocity field over a single mesh spacing, 
unphysical oscillations in the numerical solution may arise. Slight overprediction of 
the crossflow diffusion constant D,, can render the net diffusion constant, 
(D,,, + DND- D,,), negative when the physical diffusion constant D,, is much 
smaller than the numerical and crossflow diffusion constants D,, and D,,. Once 
the net diffusion constant becomes negative, the resulting numerical solution 
exhibits an oscillation which degrades the solution accuracy very rapidly. 
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